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We disclose a palladium-catalyzed dehydrogenative cis double
phosphorylation of terminal alkynes withH-phosphonate1 affording
(Z)-bisphosphoryl-1-alkenes2 (eq 1).1 Metal-mediated additions of
hydrogen phosphonates (RO)2P(O)H to carbon-carbon unsaturated
bonds, so far reported, all are hydrophosphorylation reactions (i.e.,
the addition of the P(O)-H bond).2 A dehydrogenative cis double
phosphorylation reaction has never been recognized.3 Although,
synthetic and biological applications of (Z)-bisphosphoryl-1-alkenes
2 as precursors for bidentate ligands and antibiotics4 are readily
expected, there is no general method for their preparation and only
a very limited number of these compounds are known.5

We accidentally found this reaction during an ongoing study on
the palladium-catalyzed hydrophosphorylation of alkynes.6 As
previously reported, when PdCl2 was employed as a catalyst, no
addition took place with a mixture of (MeO)2P(O)H and 1-octyne
in toluene at 100°C for 16 h. Remarkably, however, under similar
reaction conditions an addition did proceed when the more reactive
five memberH-phosphonate16b was employed to give, to our
surprise, not the expected hydrophosphorylation product3a but a
cis double phosphorylation product bis(phosphinoyl)alkene2a as
the main product, stereoselectively (eq 2).7 The formation of a 1,2-
bis(phosphoryl)alkane4a was also detected with a ratio of2a/
3a(regioisomer ratioR/â)/4a) 49:28(14/11):13 (entry 1, Table 1).8

As shown in Table 1, this double phosphorylation can be
catalyzed by divalent palladium(II) complexes, especially the
chloropalladium(II) complexes, but is poorly catalyzed by zerovalent
palladium(0) complexes which predominantly produces the hydro-
phosphorylation adduct3a rather than the double phosphorylation
product2a. Thus, Pd(PPh3)4 afforded3a in 48% yield, and produced
only trace amount of2a. As expected palladium(II) complexes that
are easily reducible to zerovalent palladium species are not good
catalysts for this double phosphorylation either. Thus, Pd(OAc)2

only gave2a in 21% yield (entry 2). The addition of Ph3P also
dramatically suppressed the formation of2a (entry 3). On the other
hand, other divalent phosphine-free chloropalladium complexes such
as PdCl2(PhCN)2, PdCl2(COD), and (η3-allylPdCl)2 could catalyze
the dehydrogenative double phosphorylation as efficiently as PdCl2,
giving 2a in good yields.

Since the formation of4a may be due to the reduction of2a
with an hydrogen in situ generated,8 we assumed that its formation
should be suppressed by the addition of an olefin serving as an
hydrogen scavenger to favor the formation of2a. This did work
well. Thus, the yield of2a increased to 69% when the same reaction
of 1 with 1-octyne catalyzed by (η3-allylPdCl)2 was carried out in
the presence of 3 equiv of styrene (entry 8). Interestingly, not only

the formation of4a but also the formation of3a was significantly
suppressed by the addition of styrene. While the sterically crowed
methyl methacrylate worked less effectively (entry 12), other
electron-deficient olefins such as acrylonitrile and methyl acrylate
can further improve the yield of2a to 72% and 77%, respectively
(entries 9 and 11).

By employing a similar reaction condition used for the reaction
of 1 with 1-octyne (entry 11, Table 1), the palladium catalyzed
dehydrogenative double phosphorylation of1 with other alkynes
was investigated thoroughly (Table 2). Like 1-octyne, other aliphatic
terminal alkynes including the bulkyt-butylacetylene (entries 1 and
2) could undergo the dehydrogenative double phosphorylation to
give the corresponding bis(phosphinoyl)alkenes. In addition, func-
tionalized alkynes with cyano, chloro, carboxyl, and silyl groups
all could be used as the substrates in the reaction to generate the
corresponding products. Terminal aromatic alkynes also gave good
yields of the corresponding dehydrogenative double phosphorylation
products (entries 8-11). Both arylacetylenes having an electron-
donating (entries 9 and 10) and an electron-withdrawing (entry 11)
group gave similar results to phenylacetylene, which may indicate
that an electronic effect of a substituent is small in this reaction.
Ferrocenylacetylene also produced the corresponding double phos-
phorylation adduct in a moderate yield.

Compound1 readily reacted with (η3-allylPdCl)2 (1:Pd ) 2:1,
THF, 25 °C, 0.5 h) to give5 in 95% isolated yield (Scheme 1).
Furthermore, a stoichiometric reaction of5 with 1-octyne (5:1-

Table 1. Pd-Catalyzed Dehydrogenative Double Phosphorylation
of H-Phosphonate 1 with 1-Octynea

% yieldb

entry catalyst olefin (equiv) 2a 3ac 4a

1 PdCl2 none 49 28 13
2 Pd(OAc)2 none 21 55 4
3 PdCl2/4.0 Ph3P none 7 59 0
4 PdCl2(PhCN)2 none 53 30 7
5 PdCl2(COD) none 56 27 8
6 Pd(PPh3)4 none 10 48 1
7 (η3-allylPdCl)2 none 51 30 7
8 CH2dCHPh (3) 69 10 2
9 CH2dCHCN (3) 72 14 1

10 CH2dCHCO2Me (3) 74 12 1
11 CH2dCHCO2Me (1) 77(75)d 13 2
12 CH2dCMeCO2Me (3) 67 15 9

a Reaction conditions:1 (0.25 mmol), 1-octyne (0.25 mmol), (η3-
allylPdCl)2 (3 mol % based on Pd), olefin, toluene (1 mL), 100°C, 16-22
h. b Determined by31P NMR. Yields are based onH-phosphonae1 used.
c Total yields of theR and â regioisomers.d Yield in parentheses is an
isolated yield.
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octyne) 1:2, toluene, 50°C, 16 h) gave 76% yield of2a. Moreover,
5 catalyzed the dehydrogenative double phosphorylation of1 with
1-octyne, as efficiently as (η3-allylPdCl)2, to give2a in 75% yield.

Although a detailed reaction mechanism remains to be clarified,
we feel that a Pd(II)/Pd(IV) catalytic cycle, rather than a conven-
tional Pd(0)/Pd(II) catalytic cycle,3 as shown in Scheme 1 should
be suitable for explaining the reaction. Thus first,5 reacted with

an alkyne to give6 via a selective cis addition of the P(O)-Pd
bond to the carbon-carbon triple bond. Intramolecularly and/or
intermolecularly via a reaction with1, complex6 gave a hydri-
dopalladium complex7, which reacts with1 to release hydrogen,
produce2, and regenerate the palladium(II) species. Although,
currently a firm evidence for the generation of the hydrogen is not
available, the formation of6 from 5 as well as2 from 6 were
strongly evidenced by related reactions found accidently during the
course of other studies (eq 3).9 Thus, complex8 (an analogue of
5) reacted with 1-octyne (8:1-octyne) 1:2.5) in CD2Cl2 in a sealed
tube at 50°C to give quantitatively a new complex9 (an analogue
of 6) via a cis insertion of the Pd-P(O) bond of8 to 1-octyne with
P(O) bonding to the terminal carbon and Pd bonding to the internal
carbon. Furthermore heating9 at 80°C resulted in the formation
of 2a in 75% yield, which may be rationalized to take place via
intermediates10 and11.10

In summary, we have successfully revealed the first dehydro-
genative cis double phosphorylation ofH-phosphonate with alkynes
forming (Z)-bisphosphoryl-1-alkenes. Further studies on the reaction
mechanism and applications to otherH-phosphorus compounds are
now in progress.
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Table 2. Palladium-Catalyzed Dehydrogenative Cis Double
Phosphorylation of Alkynes with H-Phosphonate 1a

a Reaction conditions:1 (1 mmol), alkyne (1 mmol), CH2dCHCO2Me
(1 mmol), (η3-allylPdCl)2 (3 mol % as Pd), toluene (4 mL), 100°C, 16 h.
Yields based on1 used.b[P] ) P(O)(OCMe2-Me2CO).

Scheme 1. A Simplified Sketch for the Dehydrogenative Double
Phosphorylation of Alkynes with 1 ([P] ) P(O)(OCMe2-Me2CO),
for Clarity, Ligands on Palladium were Omitted).
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